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ABSTRACT

. An approach to multivariate interpolation is described. The algorithm is

applicable in arbitrary dimensions, and can generate surfaces of arbitrary

smoothness. This is accomplished by tesselating the (polyhedral) domain into

simplices and using one dimensional algorithms to construct interpolants first

on edges and then successively on higher order faces by blending methods. The

result is a piecewise rational function of a high degree which has the

prescribed global smoothness and interpolates to the original data. The

interpolants are local, i.e. their evaluation at a point requires only data on

the simplex that the point resides in. The schemes require data of the same

degree as the degree of global smoothness. The degree of polynomial precision

is greater than or equal to the degree of smoothness. The approach derives

its power and simplicity from the fact that derivatives in directions N.,

perpendicularly across faces are incorporated directly as data. . .
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SIGNIFICANCE AND EXPLANATION

An approach is described to the interpolation of data in arbitrarily many

variables. The schemes are of arbitrary smoothness and require data of the

same degree as the degree of smoothness. The domain is assumed to be

tesselated into simplices (e.g. triangulated in the case of two variables).

Evaluation at a point requires only data on the simplex that the point resides

in. The methods described here constitute the only known local interpolation

schemes in arbitrarily many variables and with an arbitrary degree of smooth-

ness.
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MULTIVARIATE PERPENDICULAR INTERPOLATION

Peter Alfeld

1.Introduction

A ..

The problem of interpolating to scattered multivariate data is becoming increasingly

important. Applications include the modeling of physical phenomena involving space and

* time (e.g. combustion, temperature, pressure, etc.) and the design of geometric objects

(e.g. the body of a car or an aircraft). For a recent survey of this area see Barnhill,

1983.

In this paper, we describe an approach to multivariate interpolation in an arbitrary

number of variables, and with an arbitrary degree of smoothness. We assume that the domain

of interest has been tesselated into simplices, and that at the data points we are given

the values of all partial derivatives through the same order as the degree of smoothness.

S.. Any other directional derivatives can then be constructed from the partial derivatives. We

do not address the question of how the tesselation may be accomplished, or how higher order

data may be generated from lower order data. For some answers to these questions see

Barnhill and Little, 1983, or Alfeld, 1984a.

Our interpolants are piecewise rational functions of the prescribed smoothness that

. o.

interpolate to the given data. The basic idea consists of constructing the interpolant on

an individual simplex as a blend of lower dimensional interpolants on faces of the

simplex. Recursion of this procedure ultimately leads to one dimensional problems which

are easy to solve.

The interpolants derive their power and simplicity from the fact that derivatives in

directions perpendicular to faces of a simplex are incorporated directly as data. Such

derivatives govern the smoothness of the interpolants between simplices. If derivatives in

-.. other directions, e.g. parallel to edges, are used, then an algebraic link to perpendicular

Department of Mathematics, University of Utah, Salt Lake City, UT 84112.

. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the Department
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derivatives has to be constructed. This leads to extremely complex algebraic manipulations

that, moreover, at the present state of the art, cannot be carried out for a general degree

of smoothness and a general number of variables. The central role of perpendicular

derivatives gave rise to the title of this paper.

The schemes proposed here are local, i.e. their evaluation at a point requires only

data on the simplex that the point resides in. In two variables there are many local C1

and C2 schemes (see Barnhill, 1983, and the references therein). There are very few

local trivariate CI schemes (see Alfeld, 1984, and Barnhill and Little, 1983) and no

alternative C2  schemes. The methods proposed here are the only existing local schemes

for scattered data in an arbitrary number of variables and with an arbitrary degree of

smoothness.

The paper is organized as follows: In section 2, we develop some geometric concepts

and notation. In section 3, we described two types of perpendicular interpolants. In

section 4, some formulas are given that are useful for the implementation of bi- and tri- "-

variate schemes; and section 5 contains (trivariate) numerical examples and comparisons.

2. The Geometry of Perpendicular Interpolants

We shall be ultimately concerned with polyhedral regions in RP that have been
F.'

tesselated into n-dimensional simplices. Any such simplex is defined by its vertices which

we denote by V1, V2 ,...,Vn+ I . A general point x e Rn  is described in terms of

barycentric coordinates b1,i••,bn+ I as

n+1 n+l
x - bivi where ) bi = 1 . (2.1)

t=1 i-

We will always assume that the general simplex is non-degenerate, i.e. that the linear

system (2.1) possesses a unique solution.

Most of the sequel will be concerned with the development of the interpolants as they

are defined in the context of a single simplex. It will be convenient to think of the

simplex as the affine space spanned by the vertices. We define

n+1 n+1
S := {x x= biVi, ll bi= 1} (2.2)

i-1 i=1

-2-
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bound(S) (x e S I i e [1,2,...,n+11 b i  01 (2.3)
mi

When we need to refer to the simplex as the corvex hull of its vertices we will use

the notation
n+1 n

cony(S) - {x . bivi I ) bi 1, bI 0 1= 1=....n+ll
i=1 i=1

We will denote by F that n-1 dimensional face of S that is obtained by removing

the vertex Vi . F is itself a simplex and the notations bound (F) and conv (F) apply.

The set of all facets of S of dimension p, say, is denoted by F , and the set of all

facets is F.

The anchor of F is that face of S whose normal forms the smallest angle with the

normal of F. With the point x and the face F we associate the straight line through

x perpendicular to F. That line is the line of fixation of x with respect to F. F

% is also called the base face of the line of fixation. The point BF(X) where the line of

fixation intersects its base face is the base point of x and the point A,(x) where it

intersects the anchor is the top point of x (all with respect to the base face).

Before going into algebraic details in section 3 it is useful to visualize perpendicu-

lar interpolants geometrically. Consider a fixed point x and a fixed simplex S. In

unanchored interpolants, we interpolate along all lines of fixation through x to all

derivatives through given order at the base points. The final value of the interpolant is

obtained by suitably blending the values of the univariate interpolants defined on the

lines of fixation. In anchored interpolants, we interpolate additionally to function (but

no derivative) values at the top points of x.

Note that perpendicular interpolants require data on the faces of S. These are in

turn defined in terms of lower dimensional interpolants, giving rise to the recursive

structure of perpendicular interpolants. It is possible that the top point of the line of

fixation lies outside the convex hull of the points defining the anchor, necessitating

extrapolation. This is why in definition (2.2) and (2.3) we do not restrict ourselves to

-3-
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the convex hull of (V i. In the presence of obtuse angles extrapolation may also be

necessary in the base face.

The above geometric concepts are illustrated in Figures 1 and 2 for the case that

, n - 2. In section 4 on computational aspects algebraic expressions are given for n = 2

and n - 3.

3. The Interpolants

3.1. Unanchored Interpolants

We shall construct operators P5' which associate to each f a function pSf e cmS S

which interpolates f and its derivatives of order 4 m at the vertices of S.

Actually Pm-f only depends on the values of f and its derivative values at the vertices

and hence in actuality is defined for each set of discrete data. However, it is convenient

to think of P- as operating on functions. If e- is applied piecewise on a tesselation

of a polyhedral domain D into simplices, then the resulting piecewise defined function is

in C(D).

Now the operator TP is built up from the lower dimensional operators AF where F

is any face of S of dimension n - 1 and 0 4 k.4 m. In this way, the operators PS

are defined recursively starting with simplices of dimension 0 (the vertices) and working

up to higher dimensional simplices.

The operator PM is gotten by blending the lower dimensional operators Pk.

-' . Suppose Vi is a vertex of S and F is the n - I dimensional face of S which does

not contain Vi. For any point x as in (2.1) which is not in bound S) we define

IT bn (m)

C) m Wi (3.1)
' , . " T b n ~ m )

.f ~ r
hi"+2 if m is even

m+1 if m is odd

The exponents of the barycentric coordinates b are chosen to be even so that the

'blending functions cm constitute a nonnegative partition of unity even if some bary-

0->.
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centric coordinates are negative. This is necessary because as pointed out in section 2

some extrapolation on faces of S may be necessary.

We do not define c for points in bound(S); however, since bi = 0 on F, c is to

he thought of as a function which is I on F and 0 on the other faces of S. For

such a face F we also introduce the operators G; defined by

G (f)(x) : _ Pi (3] (B (x)) (3.2)
F Vi F -V F

F

where the PF are the lower dimensional operators, and, as introduced earlier, BF(X) is

the base point of x and sF is the normal to F, normalized to have length equal to the

distance from Vi  to F. Note that the operator Gr extends data on F by Taylor

interpolation in the direction perpendicular to F, hence the name perpendicular

interpolation.

Then, for n = dim(S) > 1, and m > 0, the operators pS are defined by

c'(X)Gm(f)(x) x bound(S)

FF F F

S {j (f)(x)xeFeFFe en-i

We shall see shortly that Pm(f)(x) is well defined on bound(S). Before doing this,

however, we must define PS if dim(S) 4 1 or m = 0. This is accomplished by

n+I n+l

Si=1 i=1

and

m
dim(S) = 0 == Ps(f)(x) f(V) (S = {V}) (3.5)

S

dim(S) = 1 ==>

PM(f)(tV + (1-t)V I ) : . (h m,(t) (V ) + hm M af (36(~ (2 V ) + h (t2) 1 (V2 )j (3.6) -
d5 2 1 0 j' a(V -V) I 1, acv -V 2J=O 2 21 2 1

-7-
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where S is spanned by V1  and V2  and the hm,j are cardinal polynomials of degree

2m + I that satisfy and are defined uniquely by the properties

tpm
ah (t)

i'si

axsu
t=k

s,u - O,1,...,mi i,k = 0,1, and 6 the Kronecker delta.

Thus (3.4) describes multivariate linear interpolation and (3.6) univariate Hermite

Interpolation of degree 2m + 1.
We turn now to the smoothness of P'Sf. is clear that PmSf is infinitely often __

differentiable at all points of S which a -)t in bound(S). To study on bound(S)

we need the following lemma:

Lemma. The blending functions c have the following properties:

1. For any differentiation operator D of order i, 1 C £ m, and any x0 e bound(S)

his Vc(x W 0
F

xtbound(S)

2. with G ={FI x e F)0

lim c(X) = 1
x+x 0 FeG

4bound( S)

Proof: The lemma is proved by inspection.

We now come to the fundamental theorem of this section:

Theorem 1:

The operator PT has the properties:

(i) 9'f is well defined for each f.

(ii) Pmf e C"' for each f.

-8-
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(iii) For any x0 e F e Fn-1 and any differential operator D of order 1 ( m involving

W6 "only directions contained in S:

m rn-k
VP'(f)(x = ,F-(Vf)(x

".S 0 F0

Proof: The theorem is proved by induction on dim(S). The statements are clear from the

definition (3.6) of PM- if dim (s) = 1. Now suppose we have established the theorem for

S

* all simplices of dimension n - I and let S be a simplex of dimension n.

Consider first statement (i). If x0 e bound(S) and x0 e F n F' for two faces F

and F of S then x0 e G with G a facet of dimension n - 2 contained in both F

and Fl. But then e-(f)(xo) := PGfxo and similarly for F by the induction

hypothesis. This establishes i).

-Now consider (iii) and suppose F e Fn- I a fixed face of S. Without loss of

generality we may assume that V has been written as the sum of operators of the form

"FV where VF is of order j involving only derivatives in directions contained in

k
[kF and with the normal to F and j+k = X 4 m. We first observe that

d ak t SF
F

lim V(G f)(x) = P (Df)Cx (3.7)
X+xo

x4F

Indeed, DFbi 0, and V(b ) = 0 at x0  unless V = k (in which case

iiV(bi) = ki). Hence, from our induction hypothesis

1V

lir (----a )(B.(X))

%..," . x~x0  x+x0 v1lBs
0 0 F

xc#F x+F

lim D -k ))(B f )
*~ -(M as F

0 F
x*F

mk(V - f)(B (x)
• F (P as k

sF
::i:P -(Df)(x o

L 9.

°.a - - . ,° -, , . - . . . .. .-

• 2" s.7 - -' . *i .- u ". ' - . . . " - .*. * * . . . . . '



k
The letter equality holds because D a Vf and B x 0) x0. This shows (3.).

WM F

From (3.7) we can conclude that under the same hypotheses

lim V(Pmf)(x) = P (Vf)(x 0 ) . (3.8)
X+Xo

To see this, we first observe that as in the proof of (i), the right hand side in (3.8) is

well defined if x0 lies in two different n - 1 dimensional faces of S. Let us denote

by L the common value of F71 (Vf)(x0 ) for all faces F' that contain x0 . Using the

Lema and (3.7) we have

lrm 0 (Pf)(x) = lim cm(x))L - L (3.9)
SF

x+x0  x+x0  F

x+bound(S) X0

The last equality holds because in the limit all derivatives of all cF, and all

M with x0  F vanish, rendering the sum in (3.9) equal to 1, and because the Gf(x)

are continuous and hence bounded in a neighborhood of x0 . This establishes (iii).

o"4. .. The statement (ii) now follows by induction on the degree 1 4 m of a differentiation

operator. Let e bound(S). In the proof of (iii) we have seen that lim P Mf(x) is
S

x+xo

% well-defined and assumes the value required in (3.3). It is hence continuous. Now assume

P-'' e c (s), 1 4 m, and V is a differentiation operator of degree 1. ThenS

, ." lim D f(x) is again well defined. Since PS e C (S), DP is continuous. This

establishes (ii) and completes the proof of the theorem.

" The properties of interpolation and global smoothness of piecewise applied unanchored

interpolants follow immediately from Theorem 1.

Corollary: Assume a polyhedral region D has been tesselated into simplices and let

"''.,.-._" Pm(f)(x) = Pm(f)(x) whenever x e cony(S). Then Pmf is well defined, P-mf e Cm(D)

and for all vertices V and differential operators D of order k 4 m

e 0 V(Pmf (V) D f (V)

-10-
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Proof: Nothing needs to be shown in the interior of a simplex. So let F be a

common &aLet of two simplices S and S'. Then by a possibly repeated application of

--. - Theorem 1 (iii),

T- p - Pm.f .(3.10)

Hence Pmf and its derivatives are well deft.,ed. Its smoothness follows as in the proof

of theorem 1 (ii). Interpolation follows from (3.10) and the definition (3.5).

We now turn to the question of polynomial precision.

V. Theorem 2: Let f be any polynomial in n variables of degree C m, and let tolf

be defined as in the corollary of Theorem 1. Then

pf -f

Proof: It is sufficient to consider only an individual simplex S. If m - 0, the

operator PP even reproduces linear functions which are of degree m + 1. For m > 0,

the proof is again by induction on dim (S). The statement is clear from the definition

(3.6) if dim (S) - 1 since univariate Hermite Interpolation reproduces polynomials of

degree up to 2m + 1. This follows from the existence and uniqueness of the interpolant

which is shown e.g. in Davis, 1975, p. 29.

Now suppose we have established the theorem for all simplices of dimension n - 1 and

let S be a simplex of dimension n. Let f be a polynomial of degree C m. Then f

% reduces to a univariate pjlynomial of degree 4 m along any line of fixation. It follows

that for any face F of S the operator G. reproduces f exactly because by (3.2)

G F just applies Taylor interpolation to data on F which are exact by the induction

hypothesis. The theorem now follows from (3.3) since the cm constit

unity.

- IN2
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3.2 Anchored Interpolants

In this subsection, we increase the degree of precision of unanchored interpolants by

also interpolating to function (but no derivative) values at the top point of the line of

fixation. It is infeasible to interpolate to derivatives at the top point since the

direction of interpolation is not perpendicular to the anchor. The necessary changes in

the interpolant consist of the addition of another term in the definition of the face

operators and a modification of the cardinal functions. The notation is essentially the

same as that for unanchored interpolants, except that differing objects have been

distinguished by bars. We define

%F V 0 V F F 38V F

-m -M

where A is the anchor of F, TF(x) is the top point of the line of fixation with respect

to F through x, and BF(x) and sF  are as before. The quantities bF and tF are

defined by

b : Ix - B (x)I
F F 2

and

t F :-Ix - T F(W) 2

--M
and the pV replace the Taylor polynomials. They are polynomials of degree m + I

defined by the cardinal properties

a pV(b,t) r = 01'....m

3 br b=0 rV V = 0, ,...,m+1

and pm(t,t) = 6 r - 0,,...,m+l
rr ,m+ 1

Explicitly they are given by

m bV
p(b,t) - )m-+

-12-
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and

m bm+1
P (b,t) = (h)

Thus the operator extends data on F and its anchor by univariate interpolation along
F

the line of fixation.

-M
The operators PS are now defined analogously to PM by

c FXG f)x) x * bound(S)
Fe F_-

n-I
P (f)(x):S x P(f)(x) x e F e Fn 1

if dim (S) > 1 and m > 0, and

P (x) PsX), (x) =P ( x)

S.S S S S

otherwise.

The following theorem is analogous to Theorem I:

Theorem 3:
.5"

The operator P has the properties

i) 7f is well defined for each f
S m 0

(ii) f e c for each F
/. S

( (iii) For any x0 e F e FnI and any differential operator V of order £ m mn

involving only directions contained in S:

D (f)(x o) = .f)Cx

Proof: The proof of Theorem in like that of Theorem 1. The only difference is that

the -(f) differ from the -m(t) on faces other than F. However, all that is required

S -
is the boundedness of G (f)(x) as x approaches a point in a face other than F. This,

F
mhowever, follows from the continuity of Cf).
F

Global Smoothness and interpolation follows as for Theorem 1:

-13- N
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Corollary: Assume a polyhedral region D has been tesselated into simplices and let

"PM(f)(x) = (f)(x) whenever x e conv(S). Then -mf is well defined, "f e Cm(D), and
!) o* ° 0"S

for all vertices V and differential operators V of order k < m

V(P f)(V) - Vf(V)

The advantage of anchored interpolants is that the degree of polynomial precision is

increased without raising the degree of the required data:

Theorem 4: Let f be any polynomial in n variables of degree 4 m+1, and let

P f be defined as in the corollary of Theorem 3. Then

Pm f

The proof of theorem 4 is analogous to that of theorem 2.

S%%

4. Implementation of Interpolants in Two or Three Variables

In this section, we develop algebraic representations of the geometric concepts

introduced in the preceding sections. We restrict our attention to two or three

variables. An edge of a simplex will be denoted by eij = Vi - Vj.

.-" 4.1 Two Variables

In this case, the generic simplex S is a triangle, and its faces are edges. The

anchor A of the base face e is that edge other than e that maximizes the expression

cos 01 . *I TAl2

~N IAN*

%. where a is the angle formed by e and A. In the case of an isosceles triangle, the

resulting tie may be broken arbitrarily, but this must be done consistently. Some care may

be necessary to avoid different assignments of the anchor at different stages of the

computation due to round-off errors.

-14-
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To maintain generality we consider a general triangle S with vertices Vie Vj, Vk,

.-r-J where ejk is the base face and eij is its anchor, as depicted in Figures 1 and 2. Any

actually occuring situation can be described by assigning suitable values to i, J, and

k.

The normal 4 to the base face is expressed in the form

.=ei + Ye k where

TT (4.1)4 0 i.e. y !-Lj a
k 

e T •e

'.. " A general point x is written in terms of barycentric coordinates as

x = biVi + bjVj + bkVk, b i + b1 + bk - 1

Let B denote the base point of the line of fixation through x, and let T denote

its top point. With the normalization implied by (4.1) we have that bi is the natural
3bi

parameter along 0, i.e. 1 1. We obtain

x= B+bi, B-asV + akVk

where as - bj + (1-Y)bi, ak - 1 - aj, and

T - ciVi + c V where
iiJ

c = and cs = I-c i

Note that always y 0 0 because the choice of the anchor avoids right angles 0.

4.2. Three Variables

We now repeat this development for the case of three variables and consider a general

tetrahedron S with vertices Vi, Vi, Vk, V1  where the base face is spanned by VJ, Vk,

and V. The normal to the base face is written as

e iei + mejk + $ekA

where a and are defined by the linear system

0T e 7
jk k

ilt -15-%4o-is-
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Explicit expressions for a and Bare given by:

. T T T T
= jk kA-it k U kiekIkieji * k

T T T 2
ee e -(ee
jkejkekitk jk kt

and

T T T T
e , e k e eik - ek e keiek

e T T T 2
ekkeke ek - e keIejkejkekek -(jkek)

The anchor of the base face is that face other than the base face whose normal q,

say, maximizes the expression

'£.. 101 2lql2

* 4" A general point x is now written as
o-

x - biVi + b vj + b Jk + bV,

where

b i + b + bk + b t , I

Again we denote the base point by B and the top point by T. We obtain

B - aiVi ak'k * aVLI

where

1aP a b + (1-a)b i

ak bk + (a-)b .

aL=I -aj -ak

and, assuning the anchor is spanned by Yit Vif Vk

T - civi + cjvj + ckVk

where

at

c = a + (%-1)ci

ck = 1-c i -c

-16-
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5. Computational Aspects and Numerical Results

5.1. Computational Aspects

We have implemented all the schemes described in this paper into FOR2M research

codes. A major tool in constructing the codes was the symbol manipulation language R=GCX

(Hearn, 1983), which can be instructed to write mathematical formulas directly in VOR2A

notation. We have examined all interpolants using the smoothness tester MNXCFCOM (Alfeld

and Harris, 1984). This investigation confirmed that the codes do indeed possess the

smoothness and precision properties implied by the mathematical construction.

5.2. Numerical Results

In this section, we compare several trivariate schemes on a simple problem. The

domain is a distorted cube that has been tesselated into 12 tetrahedra. The tesselation is

described in detail in Alfeld, 1984b. The guiding principle behind the construction of the

domain was to avoid artifacts due to e.g. edges or faces being parallel to coordinate axes,

etc.
.4.

For ease of comparison an underlying function was used. This was given by
F(x,y,z) -/r2_x2-y2_z

2  (5.1)

for several values of r. The derivative data required for the schemes were exact. The

distance of the vertices of the domain from the origin varied between 18.71 and 187.6.

For comparison, we also include transfinite variants of our interpolants, i.e.,

schemes where the data on faces are given exactly rather than being defined by lower

dimensional interpolants. Thus VP and 7 denote the transfinite interpolants

corresponding to Pm and 9, respectively.

Table I contains the numerical results. The interpolation schemes are ordered by

increasing complexity as defined by the amount of CPU time (on the DEC System 20 of the

College of Science at the University of Utah) required for one evaluation of the

interpolant. The individual schemes were not programed in the most efficient fashion

*.?4
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possible, but their implementations are sufficiently similar such that the comparison is

valid. The following is a more detailed description of the table by columns:

1. (Scheme) Short notation for the scheme. For most of the scheme the notation is

defined in this paper, but the schemes defined in Alfeld, 1984b are included for

comparison.

2. (Discrete versus Transfinite) Indicates whether the scheme is a transfinite or a

discrete one.

3. (Anchor) Indicates whether the scheme is anchored or not. N. A. means that the

scheme is not based on perpendicular interpolation so that this distinction does not apply.

4. (Precision) All (trivariate) polynomial of degree up to the given number are

reproduced exactly by the scheme.

5. (Smoothness) All derivatives through the given order are continuous.

6. (r) The value of r in (5.1).

7. (Error) The maximum relative error (computed over the entire distorted cube).

This quantity was computed by searching in each tetrahedron with Winfields Method

(Winfield, 1973) starting at the centroid of the tetrahedrom. This algorithm identifies

local maxima. Hence there is a slim possibility that the overall global maximum was

overlooked by the method. However, this is an unlikely occurrence because on each tetra-

hedron the primitive function (although not the relative error) is uniformly convex.

8. (CPU) The CPU time in milliseconds for one evaluation of the interpolant (not

including the setting up of the relevant data structure).

9. (CONN.) Comments:

(1) This is the standard linear interpolant that is included here for comparison.

(2) This is the transfinite scheme described in Alfeld, 1984b. It is also included

-for comparison.

(3) Here the necessary extrapolation on the anchor caused an evaluation of the

primitive function outside of its domain where x2 + y2 + z2 > r2. The computing system

proceeded by replacing negative radicands by their absolute values.

I.o

%'
-.. ". "
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(4) This is the discrete interpolant described in Alfeld, 1984b. It is also included

for comparison.

The following points emerge from the table:

1. Most schemes give reasonable results, considering that a large part of the domain of

the primitive function is covered by only 12 tetrahedra.

2. The discrete schemes are significantly more complex than the transfinite schemes. The

only exception to this is the very simple linear interpolation scheme, which yields a

surface that is only continuous.

3. The discrete anchored C1 interpolant P is much more efficient than its competitor

described in Alfeld, 1984b which has very similar properties. Indeed, an attempt was made

to construct a C2 scheme along the lines described in that paper. This attempt failed

for purely practical reasons, the C scheme ws simply too complex for all practical

purposes. Since the smoothness and precision of the C1 schemes are identical, and the

maximum relative errors are very similar, this demonstrates the superiority of the

perpevdicular interpolation approach described in this paper.

4. As one would expect, the discretization of a transfinite scheme increases the error

substantially. This is a price that simply has to be paid in a practical application since

transfinite data will usually not be available.

5. The accuracy also deteriorates as the radius of the domain decreases and the boundary

of the domain approaches the outmost point of the tesselation.

6. The gain in accuracy due to employing a C rather than a C scheme is surprisingly

small.

-19-
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4. 

.4.

1 2 3 4 6 7 8 9

DISCRETE
SCHEME versus ANCHOR PRECISION SMOOTHNESS r ERROR CPU COMM.

TRANSFINITE

200 2.1E-1 (I)

PO Discr. both 1 0 300 4.0E-2 4.9
400 1.9E-2

200 7.9r-3

w
I  Trnsf. no 1 1 300 2.4E-3 8.7

400 1.2E-3

200 3.3E-3

1 Trnsf. yes 2 1 300 1.1E-4 10.1
400 2.6E-5

200 6.7E-4

' BBG Trnsf. N.A. 2 1 300 3.2E-5 10.3 (2)
400 6.8E-6

200 2.5E-4

W W2 Trnsf. no 2 2 300 2.8E-5 12.3
400 7.5E-6

-2200 6.4E-4 (3)

V Trnsf. yes 3 2 300 1.01-5 16.1
400 2.1E-6

200 1.2E-1

P1  Disir. no 1 1 300 9.7E-3 18.4
400 4.4E-3 .

200 8.7E-2

-1
P ier. yes 2 1 300 1.4E-3 44.2

400 2.8E-4

200 1.3E-1 (3)

P2  Disr. no 2 2 300 6.4E-4 65.8
400 1.2E-4

200 9.9E-2 (3)

P Discr. yes 3 2 300 3.9E-4 142.5
400 1.1E-4

200 8.4E-2

BBG niser. N.A. 2 1 300 1.41-3 280.3 (4)
400 2.61-4

Table 1: Numerical Results
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